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1. Choice of the Baseline Method.
We choose GPV-Pose [5] as the baseline for the follow-

ing reasons:

• To demonstrate the effectiveness of the components
in the HS-layer regarding pose estimation. GPV-
Pose is one of the state-of-the-art 3D-GC [10] based
category-level object pose estimation methods. It is
suitable for us to show how each component of the
HS-layer incrementally added onto the 3D-GC layer
influences the performance of pose estimation.

• To compare the HS-layer with the strategies pro-
posed by other methods. For example, SSP-Pose [16]
and RBP-Pose [15] are also developed based upon
GPV-Pose. The former leverages the prior-shape in-
formation and uses a shape deformation module to im-
prove performance. The latter enhances GPV-Pose by
a residual bounding box projection (SPRV) module
and a shape deformation module. We compare with
SSP-Pose to demonstrate the effectiveness of STE. We
also show the influence of the RF-F approach by com-
paring it with RBP-Pose. In the experiments, our sim-
ple STE and RF-F method outperform their counter-
parts in strict metrics (e.g., IoU75, 5◦2cm, and 5◦5cm
metrics) and achieve competitive results in other met-
rics.

2. About the Object Detector
For a fair comparison, as when compared against other

methods [5, 15, 16], we also utilize the MaskRCNN [6] to
detect the objects in our experiments. It is worth noting that

*The corresponding author.

our method is not limited to MaskRCNN [6]. Other object
detectors such as SD-MaskRCNN [4] and PointNet [11] can
also be used.

3. About the Speed
Since the speed can be different when performed on dif-

ferent machines, we only use the results of the speed to
demonstrate that our method can achieve real-time perfor-
mance and do not emphasise a speed comparison with other
methods.

3.1. The Speed of GPV-Pose

For a fair speed comparison with the baseline, GPV-
Pose [5], we report the speed of GPV-Pose on our machine
with the same evaluation code as ours. The speed of GPV-
Pose achieved on our machine (69 FPS) is faster than the
original paper (20 FPS) due to the following reasons:

• The difference between the machines. The original
paper of GPV-Pose reports the speed test on a single
TITAN X GPU, while we test GPV-Pose on a single
RTX 3090 GPU with an Intel(R) Core(TM) i9-10900K
CPU, 32 GB RAM. The speed is 33 FPS on our ma-
chine.

• The difference in the evaluation code. Our evalua-
tion code is a refactored version of GPV-Pose’s code.
We change some for-loop operations to batch oper-
ations and remove unnecessary calculations (e.g. the
bounding box voting and symmetric point cloud re-
construction) during inference. These changes signifi-
cantly boost the speed from 33 FPS to 69 FPS. All the
changes have passed unit tests to ensure they get the
same results as the original code.
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Table 1. Comparison with the state-of-the-art methods on REAL275 dataset. Overall best results are in bold, and the second-best
results are underlined. Type lists the type of input data for pose estimation. Syn. denotes whether the synthetic data is used during training.

Method Type Syn. IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm Speed(FPS)

NOCS [13] RGB-D ✓ 84.9 80.5 30.1 - 9.5 13.8 26.7 26.7 5
CASS [1] RGB-D ✓ 84.2 77.7 15.3 19.5 23.5 50.8 58.0 58.3 -
SPD [12] RGB-D ✓ 83.4 77.3 53.2 19.3 21.4 43.2 54.1 - 4

DualPoseNet [9] RGB-D ✓ - 79.8 62.2 29.3 35.9 50.0 66.8 - 2
SGPA [2] RGB-D ✓ - 80.1 61.9 35.9 39.6 61.3 70.7 - -

CR-Net [14] RGB-D ✓ - 79.3 55.9 27.8 34.3 47.2 60.8 - -
Self-DPDN [8] RGB-D ✓ - 83.4 76.0 46.0 50.7 70.4 78.4 - -

SPD [12] RGB ✓ - 75.2 46.5 15.7 18.8 33.7 47.4 - 4

SAR-Net [7] D - 79.3 62.4 31.6 42.3 50.4 68.3 - 10
FS-Net1 [3] D 84.0 81.1 63.5 19.9 33.9 - 69.1 71.0 20

SSP-Pose [16] D 84.0 82.3 66.3 34.7 44.6 - 77.8 79.7 25
RBP-Pose [15] D - - 67.8 38.2 48.1 63.1 79.2 - 25
GPV-Pose [5] D 84.1 83.0 64.4 32.0 42.9 55.0 73.3 74.6 69

Ours (10 neighbors) D 84.2 82.1 74.7 46.5 55.2 68.6 82.7 83.7 50
Ours (20 neighbors) D 84.3 82.8 75.3 46.2 56.1 68.9 84.1 85.2 38
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Figure 1. Per-category comparison between our method and GPV-
Pose. We demonstrate average precision v.s. different error thresholds on
the REAL275 dataset.

4. Comparison with State-of-the-Arts Methods

We add the comparison between the proposed HS-Pose
with methods that use different data modalities (e.g. RGB
and RGB-D) in this section.

4.1. Results on REAL275 dataset.

The comparison between the proposed method and the
state-of-the-art methods on the REAL275 dataset is shown
in Table 1. Our method outperforms the depth-only meth-
ods in 7 out of 8 pose estimation and size estimation met-
rics and achieves comparable performance in the remaining
metric. Our depth-only method also achieves competitive
results with the RGB-D-based approaches and outperforms
them in several pose estimation metrics (e.g. 56.1% (ours)
vs. 50.7% on 5◦5cm metric). It is worth noting that many of

Table 2. Comparison with state-of-the-art methods on CAM-
ERA25 dataset. Overall best results are in bold, and the second-
best results are underlined. Type lists the type of input data for
pose estimation. Prior denotes whether the method uses shape
priors.

Method Type Prior IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

SPD [12] RGB-D ✓ 93.2 83.1 54.3 59.0 73.3 81.5
CR-Net [14] RGB-D ✓ 93.8 88.0 72.0 76.4 81.0 87.7

SGPA [2] RGB-D ✓ 93.2 88.1 70.7 74.5 82.7 88.4
NOCS [13] RGB-D 83.9 69.5 32.3 40.9 48.2 64.6

DualPoseNet [9] RGB-D 92.4 86.4 64.7 70.7 77.2 84.7

SPD [12] RGB ✓ 93.1 84.6 50.2 54.5 70.4 78.6

SAR-Net [7] D ✓ 86.8 79.0 66.7 70.9 75.3 80.3
SSP-Pose [16] D ✓ - 86.8 64.7 75.5 - 87.4
RBP-Pose [15] D ✓ 93.1 89.0 73.5 79.6 82.1 89.5
GPV-Pose [5] D 93.4 88.3 72.1 79.1 - 89.0

Ours (10 neighbors) D 93.3 89.4 73.3 80.5 80.4 89.4
Ours (20 neighbors) D 93.4 89.3 74.0 82.0 80.3 90.2

them are trained with synthetic data or using CAMERA25
and REAL275 for mixed training, which results in a large
number of training images and many more objects (over 1K
objects for CAMERA25 and Real275 mixed training) for
training. In contrast, our method is trained on 1.6K real
images of 18 objects. In Figure 1, we present the average
precision of each category under different thresholds and
compare it with the GPV-Pose.

4.2. Results on CAMERA25 dataset.

We test the proposed method on the CAMERA25 dataset
and show the comparison results of the proposed method
with other approaches in Table 2. We achieved top and sec-
ond scores on 5 out of 6 metrics (4 tops and 1 second) with
no need for RGB data.

1We use the results provided by the GPV-Pose, which uses the GPV-
Pose’s decoder for a fair comparison and shows higher performance than
the originally reported results of the FS-Net.



Table 3. Per-category results of our method on REAL275 dataset.

category IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm 5◦ 10◦ 2cm 5cm 10cm

bottle 57.7 57.7 54.8 43.0 53.1 80.0 95.4 98.5 66.9 99.2 81.0 96.5 99.5
bowl 100.0 100.0 100.0 92.1 95.6 96.5 100.0 100.0 95.6 100.0 96.5 100.0 100.0

camera 90.9 82.3 65.2 2.3 3.1 28.3 35.7 35.8 3.1 35.8 60.9 98.1 100.0
can 71.4 71.4 70.5 68.6 75.0 90.0 98.5 98.5 77.8 99.7 90.0 98.6 98.8

laptop 86.1 84.9 67.1 49.3 79.5 52.4 94.0 96.8 80.8 96.9 52.4 94.6 99.5
mug 99.2 96.4 90.8 23.8 25.0 64.6 72.6 72.6 25.0 72.6 88.5 100.0 100.0

average 84.2 82.1 74.7 46.5 55.2 68.6 82.7 83.7 58.2 84.0 78.2 98.0 99.6

Table 4. Per-category results of our method on CAMERA25 dataset.

category IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm 5◦ 10◦ 2cm 5cm 10cm

bottle 93.9 93.8 90.9 80.1 96.7 80.7 97.8 99.4 98.5 99.8 80.7 97.9 99.5
bowl 96.9 96.8 96.8 98.4 98.6 99.4 99.8 99.8 98.7 99.8 99.4 99.8 99.9

camera 94.8 85.4 74.3 51.2 55.1 65.0 70.6 70.9 55.5 71.4 86.9 99.0 99.6
can 92.5 92.4 92.2 99.0 99.4 99.0 99.5 99.5 99.9 100.0 99.0 99.5 99.6

laptop 98.4 97.4 90.6 75.6 85.2 81.1 92.7 97.0 89.0 97.1 83.3 95.6 99.9
mug 94.1 93.8 91.9 35.4 47.9 57.4 76.2 76.2 49.1 76.9 75.9 99.5 99.6

average 95.1 93.3 89.4 73.3 80.5 80.4 89.4 90.5 81.8 90.8 87.5 98.6 99.7

5. Per-category Results
The per-category results trained on the REAL275 and

CAMERA25 datasets are shown in Table 3 and Table 4,
respectively.

6. Settings of Noise Resistance Experiments
In the ablation study [AS-6], we compared the outlier

robustness of the proposed method and the baseline. We
define outliers as the points that do not belong to the target
object. The outlier ratio is defined as the ratio of the out-
liers’ number to the total point number of the input point
cloud. We use the REAL275 dataset for testing and gener-
ate the noisy input data by sampling points from the back-
ground and the object region according to the outlier ratio.
To ensure a fair comparison, the noisy data used for testing
the proposed and baseline methods is the same.

7. Ablation Study on ORL
We demonstrate the effectiveness of the proposed outlier

robust feature extraction layer (ORL) in Fig. 2. We test the
noise resistance of the proposed HS-Pose with and without
ORL using different outlier ratios (from 0.0% to 40.0%) in
the input point cloud. The figure shows that the ORL suc-
cessfully enhances the performance on the size-pose-joint
metric (IoU75), translation metric (2cm), and rotation met-
ric (10◦) across different noise levels.

8. Ablation Study on the Neighbor Numbers
To investigate the influences of the neighbor numbers,

we test the performance of the proposed method using dif-
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Figure 2. The comparison of noise resistance of the proposed HS-Pose
with (Ours) and without outlier robust feature extraction layer (ORL)
(Ours w/o ORL). We show the influences of ORL in differences metrics
(e.g. 2cm, IoU75, 5◦2cm, and 10◦). After adding ORL, the performance
is enhanced across different noise levels (from 0.0% to 40.0% outliers).

ferent neighbor numbers (from 3 to 40) in the RF-F and
ORL2. The experiments are separated into three groups to
evaluate the impact: 1) change the RF-F’s neighbor num-
ber with the ORL’s neighbor number fixed, 2) change the
ORL’s neighbor number with the RF-F’s neighbor number
fixed, and 3) change the neighbor numbers of the RF-F and
ORL simultaneously.

2Due to the limit of the GPU memory size, we set the batch size to 16,
16, and 8 for 20, 30, and 40 neighbors, respectively.



Table 5. Performance of the proposed method when changing
the neighbor number of RF-F. The neighbor number of the ORL
is fixed to 10 in this experiment. Overall best results are in bold,
and the second-best results are underlined.

Neighbor Number 3 5 10 20 30 40

5◦2cm 39.8 41.5 46.5 46.1 44.3 41.6
5◦5cm 49.2 51.4 55.2 56.7 54.7 54.4
IoU75 72.9 72.8 74.7 73.4 74.7 71.9

Speed (FPS) 64 60 50 41 34 30

Table 6. Performance of the proposed method when changing
the neighbor number of ORL. The neighbor number of RF-F is
fixed to 10 in this experiment. Overall best results are in bold, and
the second-best results are underlined.

Neighbor Number 3 5 10 20 30 40

5◦2cm 43.3 43.6 46.5 42.7 43.1 39.4
5◦5cm 53.1 53.0 55.2 55.3 54.4 53.7
IoU75 74.6 72.8 74.7 72.7 73.9 71.1

Speed (FPS) 52 51 50 48 48 49

8.1. Change RF-F’s Neighbor Number Only

Table 5 shows the performance of the proposed method
using different neighbor numbers in the RF-F with the
ORL’s neighbor number fixed to 10. As seen from the table,
finding more neighboring 3D points using feature distance
requires a longer time, while a certain range of neighbor
numbers (around 10-20 neighbors) produces better preci-
sion than other numbers. Specifically, the speed decreased
from 64 FPS to 30 FPS when increasing the neighbor num-
ber from 3 to 40. In the meantime, the performance on
5◦2cm, which starts at 39.8%, reaches its best at 46.5%
when using 10 neighbors, after which it begins to decline
and ultimately reaches a score of 41.6% at 40 neighbors.
Generally, using 10 neighbors for RF-F achieves the overall
best performance while maintaining fast speed. The reason
why insufficient and excessive neighbor numbers adversely
affect the precision might be that fewer neighbors cannot
fully characterize the global geometric feature, whereas an
excessive number of neighbors may obscure the geometric
structural information in the formed receptive field.

8.2. Change ORL’s Neighbor Number Only

Table 6 shows the performance of the proposed method
using different neighbor numbers in the ORL with the RF-
F’s neighbor number fixed to 10. According to the table,
the speed for finding neighboring points in 3D space is rela-
tively stable, which only dropped by 4 FPS when the neigh-
bor number increased from 3 to 40. Compared to the RF-F,
the neighbor number impacts the speed less. The reason
is that in RF-F, the nearest neighbors are found in higher
dimensional feature space. In terms of precision, an appro-
priate range of neighbor numbers is beneficial for ORL to

Table 7. Performance of the proposed method when chang-
ing the neighbor number of the ORL and RF-F together. The
neighbor number of ORL and RF-F are set to the same in this
experiment. Overall best results are in bold, and the second-best
results are underlined.

Neighbor Number 3 5 10 20 30 40

5◦2cm 39.0 41.7 46.5 46.2 46.4 39.6
5◦5cm 47.6 52.8 55.2 56.1 56.6 55.8
IoU75 73.1 72.7 74.7 75.3 75.2 70.3

Speed (FPS) 64 59 50 38 30 26

balance finding the reliable points and outliers. Similar to
RF-R, using 10 neighbors performs better than other values
in our experiments.

8.3. Change the Neighbor Number Simultaneously

Table 7 shows the performance of the proposed method
with the neighbor numbers of the ORL and RF-F changing
simultaneously. As shown in the table, when the neighbor
numbers are around 10-30, the performance of our method
is best. Moreover, in this range, using the same number of
neighbors leads to better precision compared to fixing one
of the neighbor numbers to 10. The reason might be that
with increasing neighbor number in RF-F, more global geo-
metric structure information can be found, and the possibil-
ity to include uninformed points is also increased. There-
fore, with the neighbor number in ORL also increased, the
effect brought by these uninformed points can be compen-
sated, thus resulting a better performance. However, with
too many neighbors, the performance still deteriorates be-
cause the balance between identifying reliable points and
rejecting outliers is hurt.

9. Qualitative Results
More qualitative results comparing our method with the

GPV-pose are shown in Fig.3.
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Figure 3. More qualitative results of our method (green line) and the GPV-Pose (blue line) on the REAL275 dataset. We choose two instances from
each scene. The ground truth results are shown with white lines. The estimated rotations of symmetric objects (e.g. bowl, bottle, and can) are considered
correct if the symmetry axis is aligned.
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