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Abstract— Fast and accurate tracking of an object’s motion
is one of the key functionalities of a robotic system for achieving
reliable interaction with the environment. This paper focuses on
the instance-level six-dimensional (6D) pose tracking problem
with a symmetric and textureless object under occlusion. We
propose a Temporally Primed 6D pose tracking framework with
Auto-Encoders (TP-AE) to tackle the pose tracking problem.
The framework consists of a prediction step and a temporally
primed pose estimation step. The prediction step aims to quickly
and efficiently generate a guess on the object’s real-time pose
based on historical information about the target object’s motion.
Once the prior prediction is obtained, the temporally primed
pose estimation step embeds the prior pose into the RGB-D
input, and leverages auto-encoders to reconstruct the target
object with higher quality under occlusion, thus improving the
framework’s performance. Extensive experiments show that the
proposed 6D pose tracking method can accurately estimate the
6D pose of a symmetric and textureless object under occlusion,
and significantly outperforms the state-of-the-art on T-LESS
dataset while running in real-time at 26 FPS.

I. INTRODUCTION

Thanks to the rapid development of reliable mechanical
structures, highly efficient actuators and powerful algorithms,
robotic systems have been deployed into various real-world
applications such as mobile manipulation [1], legged sys-
tems [2], robotic manipulation [3], and so on. With the
increasing need for interacting with the environment, accu-
rate detection and tracking of a target object become a core
functionality for modern robotic systems.

This paper focus on the instance-level six-dimensional
(6D) pose tracking problem. Under various robotic appli-
cation scenarios, the target objects to be manipulated or
interacted are possibly symmetric and textureless. Further-
more, the target object may be occluded by the environ-
ment or other objects. In these situations, estimating the
target object’s pose becomes much more challenging. Unlike
the conventional pose estimation problems based on single
RGB(-D) data, pose tracking leverages historical information
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Fig. 1: Performance of the proposed TP-AE framework. The proposed
framework outperforms state-of-the-art approaches such as PoseRBPF [4]
and CosyPose [5] for symmetric and textureless objects under occulsion.

about the target object’s movement to assist in obtaining the
desired pose. Incorporating the historical information and
considering the pose tracking problem allows for dealing
with challenging scenarios involving symmetric and texture-
less objects under occlusion.

To solve the pose tracking problem, we develop a
Temporally Primed 6D object pose tracking framework with
Auto-Encoders (TP-AE). The proposed framework first pre-
dicts the 6D pose of the target object from a historical pose
sequence and then uses the prediction to assist the visual-
based pose estimation given the real-time RGB-D measure-
ment. For the prediction step, we propose to use temporal
pose information to encode the raw RGB-D image stream
information. Once the prediction is generated, the temporally
primed pose estimation step adjusts the predicted pose via
a reconstructed pose reference generated by auto-encoders.
By resorting to the auto-encoder based reconstruction, the
proposed refinement scheme effectively handles symmetric
and textureless objects under occlusion.

A. Related Works

6D Pose Estimation 6D object pose estimation problem
that aims to estimate an object’s 6D pose from a single image
without temporal information has been extensively studied in
the literature over several decades. Classical methods [6], [7]
achieved high precision while requiring prohibitive hyper-
parameter tuning when applied to new scenarios. Recently,
deep learning-based methods have shown better generaliza-
tion ability in challenging scenarios involving symmetric
and textureless objects under occlusion. For example, [8],
[9] aim to address rotational ambiguity. [10]–[12] focus
on occlusion. [13], [14] consider textureless objects. More
recently, various approaches have been proposed to deal with
mixed challenges. For instance, [15], [16] handle symmetric
objects under occlusion. Estimating poses for textureless
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Fig. 2: Overview of the proposed framework. The framework contains two major units: the prior pose prediction unit and the temporally primed pose
estimation unit. The prior pose prediction unit predicts a prior pose based on the historically estimated poses. Then the predicted pose and the input RGB-D
image are fed into the temporally primed pose estimation unit to attain the final pose estimation.

objects under occlusion has been investigated in [5], [17]–
[20]. Symmetric and textureless objects have been considered
in [21]–[23]. However, none of them can address symmetry,
textureless, and occlusion simultaneously.

6D Pose Tracking As a natural extension of classical pose
estimation problem, pose tracking problem try to incorporate
temporal information to achieve higher pose estimation accu-
racy, which offers opportunities to simultaneously address all
three aforementioned challenges. Traditional pose tracking
methods [24], [25] rely on hand-crafted likelihood functions,
which is hard to generalize to new scenarios. Due to the
lack of rich video datasets, the development of learning-
based 6D pose tracking schemes remains limited. Along this
direction, pioneering works such as [26]–[30] try to utilize
the relationship between current image with the last image to
aid estimating objects’ pose. However, focusing on only two
consecutive steps is restrictive in fully characterizing objects’
motion. To this end, [4], [31] use Rao-Blackwellized Particle
Filter [32] and Unscented Kalman Filter [33], respectively,
to encode motion information that is subsequently used for
object tracking. Nonetheless, the performance of [4] under
occlusion remains unsatisfying due to the lack of utilization
of temporal information in the object reconstruction phase.

Despite these recent advances on pose estimation and
pose tracking, how to construct a reliable and efficient pose
tracking framework for symmetric and textureless objects
under occlusion remains a challenging problem.

B. Contributions

The main contributions of this paper are as follows. First,
we propose, to the authors’ best knowledge, the first neural-
network based prior pose generation scheme. This scheme
exploits the target object’s pose history of any length to
better predicts the object’s future pose. By working with
the pose information encoded in the complete movement of
the object, the proposed scheme is computationally friendly
and generates more accurate predictions in cases where
the object moves with non-constant velocity. Second, we
develop a novel temporally-primed pose estimation scheme
consisting of a pose-image fusion and auto-encoder based
pose estimation, which improves the learning performance of

the residual pose. The pose-image fusion scheme helps with
reconstructing the intact appearance and point cloud from
only partially observed measurement. Combined with the
latent codes and features available from the auto-encoders,
the overall temporally-primed pose estimation scheme suc-
cessfully handles symmetric and textureless objects under
occlusion. Third, the overall framework achieves not only a
state-of-the-art performance in standard 6D object pose es-
timation dataset benchmarks (especially for T-LESS dataset
that contains numerous scenarios with symmetric and tex-
tureless objects under occlusion AR: 82.3 vs. 73), but also
real-time speed (26 FPS).

C. Framework Overview
Fig. 2 shows an overview of the proposed framework.

Generally speaking, the proposed framework contains a prior
pose prediction unit and a temporally primed pose estimation
unit. At each time step, the prior pose prediction unit first
generates a predicted 6D pose based on the historical pose
estimations of the target object. Then, such a predicted 6D
pose together with the real-time measured RGB-D data is fed
into the temporally primed pose estimation unit to further
adjust the predicted pose to obtain the final result.

To achieve fast prediction and account for the lack of large
video datasets, the proposed framework takes the historically
estimated 6D pose sequence as input to a GRU-based neural
network to generate the prediction. Once the prediction is
obtained, a pose-image-fusion module merges the predicted
pose and the input RGB-D image to generate a RGB-Cloud
pair. Then, the RGB-Cloud pair is fed into three branches to
estimate the object’s rotation, translation, and visible amount,
respectively.

II. PRIOR POSE PREDICTION

As one of the major differences from standard pose
estimation, pose tracking strategies have access to historical
information about the movement of the target object, which
has a strong implication on determining the object’s current
pose. The first important question to be answered is how to
extract such key information encoded in the historical data.

An intuitive approach to incorporate temporal data is
to train a neural network that directly maps the historical



image streams to the current pose. Such an approach requires
substantial data, which is not practically feasible due to the
lack of available datasets. Alternatively, we use historical
pose trajectory to represent the object motion without extra
data collection effort. Since the pose trajectories of different
objects can be shared, one can use the pose trajectories of any
object across different datasets to train a prior pose prediction
network and then apply it to predict the pose of an unseen
object. Moreover, using historical pose sequence for pose
prediction runs faster than using an image stream, which is
essential for object tracking tasks.

Our prior pose prediction unit consists of a buffer and a
prior pose prediction net. The buffer stores the previously
estimated poses of the target object. Let l be the size of the
buffer and let Ptest = {Rt,Tt} with Rt ∈ SO(3) and Tt ∈
R3 be the estimated pose of the target object at time t, the
sequence of estimated poses is denoted by {Piest}t−1

i=t−l−1.
Given this sequence, the prior pose prediction net uses a
GRU network [34] to regress the prior pose Ptpri.

By using the pose trajectories for prior pose prediction, we
can train our prediction net more robustly using additional
random data augmentation on the pose trajectories.

Remark 1: During inference, the initial prior pose is
generated by the existing single-image 6D pose estimation
approach, as there is no historical poses for prediction.

A. Network Architecture and Loss Function

We use a single GRU layer connected to two dense layers
to predict the prior pose. During implementation, a 6D
parameterization of the rotation space SO(3) proposed by
[35] is adopted to respect the continuity of the rotation space.
Consequently, the input to the neural network is a vector in
Rl×9 with l being the size of the buffer. The output is a
vector in R9 parameterizing the 6D pose of the target object,
including a 3D translation vector and a 6D parameterization
of the orientation state.

The total loss contains translation loss and rotation loss.
We adopt the `2 norm as the translation loss function and
calculate the rotation loss following [35]. Then, the pose
prediction loss is:

Losspri = Losspri,R + βLosspri,T (1)
where β is a hyperparameter weighting the importance of
the translation loss relative to the rotation loss.

III. TEMPORALLY PRIMED POSE ESTIMATION

This module visually estimates an object’s pose assisted
by the prior pose. It first fuses the prior pose with the real-
time RGB-D data to generate an RGB-Cloud pair, then feed
the pair to three modules to estimate the object’s rotation,
translation, and visibility. To robustify the pose estimation
network against occlusion, we leverage object reconstruction
in both the rotation and the translation estimation module.

Reconstruction networks like auto-encoders can extract the
low-dimensional representation of objects, which are com-
monly called latent codes. Roughly speaking, auto-encoder
based strategies first extract the latent code of an object
by supervising the reconstruction procedure, in which the
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Fig. 3: Illustration of prior pose embedding on Ct. The recovered
point cloud in Dt can be mapped to either the green surface (GT) or the red
surface in c) when no prior information is provided. After the transformation
using the prior pose, the transformed point cloud in C̄t (see d) is closer to
the GT point cloud distribution (see e), thus helping the network to recover
the pose and smoothing the tracking procedure.

decoder needs to recover the object using the latent code
provided by the encoder. Then, the latent code is used for
pose estimation to boost the inference speed without needing
a decoder. For such method, acquiring high-quality latent
codes under occlusion is crucial for pose estimation accuracy.

In this sequel, we first discuss how the prediction and
input RGB-D data can be expressed in a unified way to
support object reconstruction, then develop the proposed
auto-encoder based strategy that particularly addresses the
symmetry, textureless and occlusion challenges.

A. Pose-Image-Fusion

Given the prior pose prediction Ptpri and the real-time
RGB-D image (It,Dt) at a generic time t, with It being the
RGB data and Dt being the depth data, we first need to pro-
vide a unified way of representing the information encoded
therein. For this purpose, we propose to use a cropped RGB-
Cloud image pair (Īt, C̄t) which carries visually sensible
prior information for reconstruction network. The procedure
of obtaining the cropped RGB-Cloud image pair from the
given inputs (Ptpri, I

t,Dt) consists of three main steps.
First, we backproject the depth image using the camera’s

intrinsic parameters to recover its point cloud image Ct,
in which every pixel stores the recovered 3D coordinate of
the corresponding pixel in the depth image. Working with
the point cloud image helps the network to leverage the
geometric structure of the object.

Then, we extract the potentially useful area by cropping
the input RGB image and the recovered point cloud data
with an enlarged object’s bounding box (Bbox) centering at
the predicted translation Tt

pri. To improve the robustness of
the overall scheme, a Bbox scaling factor δ depending on
the object’s diameter d is introduced as follows:

δ = max{2
√

3εT /d, smin} (2)
where εT is the maximum allowable displacement between
the ground truth (GT) translation and the prediction and smin
is a pre-specified minimum scaling factor. This cropped RGB
image used as Īt.

The point cloud image crops, C̃t, is then transformed
into the frame defined by the predicted pose Ptpri and then
normalized with a scaling factor associated with the Bbox:

C̄t = RT
pri(C̃

t −Tt
pri)/|0.5δ|. (3)



In essence, the above operations transform the input RGB-
D image to the RGB-Cloud pair (Īt, C̄t). By doing so,
the object’s position in the RGB-Cloud pair indicates the
distance from Tt

pri to GT position. The point-wise fusion
in (3) makes the transformed point cloud robust to occlusion,
as the prior pose can be inferred even when part of the
point cloud is invisible. Fig. 3 provides a visual explanation
about the motivation of embedding the prior information
to the point cloud. The RGB-Cloud pair, which contains
appearance and transformed geometric information, are ideal
for object reconstruction networks to recover textureless
objects robustly under occlusion.

B. Auto-Encoder and Matching based Rotation Estimation

Once the RGB-Cloud pair is generated, we exploit the
auto-encoder based strategy to address the main challenges in
estimating the object’s pose. We first generate the latent code
of the object to achieve the robustness to occlusion, then get
the rotation by a dynamic codebook matching method. This
method naturally handles textureless and symmetric objects,
as the code matching compares the intact object’s feature
among different rotations rather than local features.

1) Latent code extraction and codebook generation: We
train an auto-encoder to extract the latent code that encodes
the object’s rotation while invariant to translation. To do so,
we generate the target RGB-Cloud pair in which the object
is in the center while maintaining its orientation (See the
output of Decoder1 in Fig. 2) by fusing the GT pose with
the GT image. The GT image shows the intact object against
a black background with constant lighting at the GT pose.
After the training, a codebook is generated by collecting the
latent codes of the object in different rotations.

2) Dynamic latent code matching: Typically, a code
matching procedure compares the cosine similarity between
the input latent code with the codebook and then obtains
the rotation using the highest similarity score [21], [23].
However, this might fail when the latent code is of poor
quality (e.g. for almost invisible objects). Therefore, we
enhance the occlusion robustness of the matching phase by
inducing the historical information into this phase and using
the object’s visible amount to balance currently observed
information and historical information. Specifically, during
inference, we generate two cosine similarity score lists by
comparing the codebook with the latent code of the input
RGB-Cloud pair and that of the historical RGB-Cloud pair.
The historical RGB-Cloud pair is obtained by fusing the prior
pose with a synthetically generated RGB-D image in which
the target object is viewed from the prior pose perspective.
Denoting the first score list as Stobs and the second score list
as Sthis, the final score is constructed as follows

St =

{
Stobs, ρt > σ
ρt

σ · S
t
obs + σ−ρt

σ · Sthis, ρt ≤ σ
(4)

where σ is a threshold to indicate whether the dynamic
adjustment is used. We then get an initial rotation estimation
Rt
init using the highest score from the final score list St.

To account for the rotation ambiguity caused by translation
as mentioned in [36], [37], we correct Rt

init by first finding

Fig. 4: The architecture of Feature Net, the Visible Amount Estimation
Net and the ∆T Estimation Net.

a rotation transformation ∆(Rt) that aligns the direction of
the estimated translation Tt

est to camera’s z-axis, then getting
the final rotation estimation by Rt

est = ∆(Rt)−1R̂t
init.

C. Auto-Encoder based Translation Estimation

The estimation of translation can also leverage the latent
code of an auto-encoder to achieve robustness to occlusion.
Specifically, we train an auto-encoder (Auto-Encoder 2 in the
proposed framework Fig. 2) to reconstruct the intact object
while preserving its location in the RGB-Cloud pair. The
reconstruction target is generated by fusing the prior pose
with the GT image. Motivated by the observation that the
object’s location in the RGB-Cloud pair provides information
about the translation difference between the prior prediction
Tt
pri and the ground truth Tt

GT , we concatenate the latent
code of rotation auto-encoder and translation auto-encoder to
an estimation network that generates the desired adjustment
∆Tt. Then, the resulting translation estimation is simply
given by Tt

est = ∆Tt + Tt
pri.

D. Visible Amount Estimation

As it is important whether the target object is still being
tracked correctly, this module estimates the object’s visibility.
We define the visible amount ρt as the ratio of visible and
total object pixels. As shown in Fig. 2, we use the feature of
the intact object (the output of Encoder2) and the occluded
object (the output of Feature Net) as the input of the Visible
Amount Estimation Net to regress ρt. During testing, ρ is
used to i) trigger re-initialization of tracking when it is lower
than a pre-defined level and ii) enhance rotation estimation
under severe occlusion (See Eq.(4)).

E. Network Architecture and Loss Function

The network architecture of the used auto-encoders is
the same as AAE [21], except that the channel number of
input and output images are set to 6. The structure of the
Feature Net, the Visible Amount Estimation Net, and the
∆T Estimation Net is shown in Fig. 4. The loss function for
training the temporally primed pose estimation unit includes
three terms: reconstruction loss Lossrec, translation loss
Loss∆T, and the visible amount loss Lossρ.

The object reconstruction loss is the region weighted sum
of the pixel-wise losses between the reconstructed and the
target RGB-Cloud pair. We divide the pixels into three
regions, the matched object region, the matched background
region, and the mismatch region. Denoting the set of pixels



belonging to the object in the target crops and the recon-
structed crops as V and V̂ , respectively, the object matching
region is V ∩ V̂ , the mismatch region is (V − V̂ )∪ (V̂ −V ),
and all other pixels belong to the background region. By
denoting the `2 loss of the ith pixel as Losspx,i, the object
reconstruction loss is:

Lossrec = Σi∈I(γ · Losspx,i) (5)
where I is the input crops and γ ∈ {γ1, γ2, γ3} is the region
based weight, in which γ1, γ2, γ3 is used for the mismatched
region, the matched object region, and matched background
region, respectively. By setting γ1 > γ2 > γ3, the auto-
encoder is guided to focus on aligning silhouette.

We use `2 loss for translation loss Loss∆T and visible
amount loss Lossρ. The total estimation loss Lossest is:

Lossest = λ1Lossrec + λ2Lossρ + λ3Loss∆T. (6)
Empirically, the parameters are chosen as β = 0.1, λ1 =
λ3 = 1, λ2 = 0.5, γ1 = 3, γ2 = 2 and γ3 = 1 to achieve
balance between all losses.

IV. EXPERIMENTS

We provide the implementation details and the experiment
results of the propose framework in this section.

Baseline methods: The result of PoseRBPF is available
from [4]. The single-image single-object (siso) result of
CosyPose is available from its official website [38]. We
use the RGB version of CosyPose since its average recall
(ARvsd) performance is lower when applying the ICP re-
finement according to the BOP challenge results [39]. The
rest of the results are from corresponding papers.

Datasets: We use T-LESS [40] and YCB-V [41] to
evaluate our framework, since other existing tracking datasets
are either limited in size [42], not accurately labeled [43], or
unsuitable for our problem setting, such as [27], [44].

1) T-LESS is widely used for pose estimation and is
the best-fit to our problem setting. It contains 10K test
images and 39K training images, in which all 30 industrial
objects are symmetric and textureless. The testing scenarios
include various occlusion levels from non-occlusion to fully
occlusion. We use VSD metric [45] for evaluation. The recall
accuracy ARvsd is reported at errvsd < 0.3 with a tolerance
τ = 20mm and > 10% object visibility.

2) YCB-V contains 92 RGB-D videos (12 for testing) with
130K real images and 80K synthetic images. It provides 21
daily objects with various shapes and texture levels. We use
the ADD-S [13] as the metric, where a pose is regarded
as correct if the average distance of the model points to
the nearest estimated points is less than 10% of the model
diameter. Following PoseCNN [41], we report the area under
the accuracy-threshold curve (AUC) for pose evaluation.

A. Implementation Details

We conduct all the experiments using one NVIDIA RTX
2080Ti GPU and an Intel i9-CPU@3.30GHZ. During train-
ing, Adam optimizer is adopted with 15000 training steps and
a batch size of 64. Similar to AAE, we use domain random-
ization methods for training images. Image backgrounds are
augmented by the images from [46]. We set εT to 28.8mm

TABLE I: Ablation study results (AR: Average Recall).
Item Comparison ARvsd

Full net Train data: Mixed 82.3
Train data: Syn. only 77.2

[AS-1]
RGB (AAE +Retina + ICP) 57.1
PIEM: RGB-D w/o Eq. 3 (syn.) 60.2
PIEM: RGB-D with Eq. 3 (syn.) 77.2

[AS-2] LSTM (mixed) 81.4
GRU (mixed) 82.3

[AS-3] W/o perspective correction (mixed) 80.6
[AS-5] No dynamic codebook matching (mixed.) 81.6
[AS-6] Refine CosyPose [5] (siso, acc: 63.8%) 74.3

Input 
image

Target 
image

Reconstruct 
with prior

Reconstruct 
without prior

Fig. 5: Reconstructed images from Decoder1 when without and with
the Eq. (3) in the pose-image-fusion module. This illustrates that the
image reconstruction quality increases when applied prior pose fusion.

and smin to 1.3 for pose-image fusion, and the RGB-Cloud
pair is scaled to 128×128 before being fed into the encoders.
Pose trajectories for training the prior pose prediction net
are augmented with rotation shift, translation shift, noise
addition, random drop and permutation. The buffer size l
is 10. During inference, we initialize the prior pose using
CosyPose (1-view version). Same as PoseRBPF, we take
the one with the highest confidence score from the pose
hypotheses as the initial pose. Re-initialization is triggered
when: 1) ρ < 0.2, and 2) the rotation tracking fails with the
same threshold as PoseRBPF [4], which is 0.6 for latent code
comparison. The viewpoint number of the codebook is the
same as PoseRBPF (184464). We set σ of dynamic codebook
matching to 0.5 for T-LESS dataset. Since the pose label of
YCB-V is not very accurate, σ is set to 1 as a compensate.

B. Ablation Study

We conducted an intensive ablation study using T-LESS
dataset to validate our framework design. Full evaluation
results are shown in TABLE. I.

[AS-1] Pose-image-fusion: We evaluate the pose-image
fusion module by comparing the performance of the auto-
encoders trained with i) RGB-only synthetic (syn.) images,
ii) RGB-D synthetic images without (w/o) Eq. (3), and iii)
RGB-D synthetic images with Eq. (3). For the first one, we
referenced the result of AAE. The increased pose estimation
accuracy in TABLE. I and the improved image reconstruction
quality under occlusion shown in Fig. 5 both confirm the the
effectiveness and motivation for pose-image fusion.

[AS-2] Prior pose prediction: To investigate the suitable
network for pose prediction, we compared the LSTM [47]
and GRU network. As the motion pattern is similar between
the training set and test set of both T-LESS and YCB-



Fig. 6: Pose accuracy under a range of occlusion level.

TABLE II: Performance on T-LESS test set (Primesense)
.Type Method ARvsd Speed

RGBD

TP-AE (mixed) 82.3 26
TP-AE (syn) 77.2 26
AAE [21] + (ICP) 57.1 2
PoseRBPF [4] 72.9 10

RGB

AAE [21] 18.4 5.9
PoseRBPF [4] 41.5 11.5
CosyPose(siso) 63.8 -
Pix2Pose [50] 29.5 0.6
PFRL [51] + AAE 51.53 4.2

D StablePose [20] 73 2.5

Rot.
Track

TP-AE (mixed) 93.4 26
TP-AE (syn) 92.7 26
AAE(GT BBox) 72.8 -
PoseRBPF(GT BBox) 85.3 -

GT
re-init

TP-AE (mixed) 84 26
TP-AE (syn.) 79.8 26

V, training directly on the training set does not reflect the
effectiveness of the proposed module. We thus use the pose
trajectories extracted from other datasets 1 and test the trained
model on YCB-V and T-LESS. Note that this will make the
task harder as the model needs to overcome the domain gap
between the training and testing data. TABLE. I shows that
both GRU and LSTM can deal well with the domain gap,
and the GRU performs better than LSTM by 0.9%.

[AS-3] Perspective correction: The mean recall dropped
by 1.7% when no perspective correction was carried out.

[AS-4] Pose accuracy distribution under occlusion:
Fig. 6 shows the pose estimation accuracy under a varying

level of occlusion. We compared our method with PoseRBPF
and CosyPose the on T-LESS test set of the BOP challenge.
As shown in the figure, our proposed method outperforms
them across all occlusion levels. Moreover, the improvements
is more significant when the visibility is under 0.5.

[AS-5] No dynamic codebook matching: TABLE. I
shows that the performance drops by 0.5% when only using
simple codebook matching (use Stobs directly). The influence
of dynamic codebook matching on different occlusion levels
is shown in Fig. 6, which indicates the dynamic matching
is effective on all the occlusion levels when the model is
trained only on synthetic data, but in case of mixed data is
more effective when the visible amount is lower than 0.5.

[AS-6] Refinement: In addition to the object tracking
task, we were also interested in how our proposed method
could be used to refine the pose estimation method by taking

1The pose trajectories are extracted from the test set of OPT [44], YCB-
M [48], TUD-L [39], and HO-3D [49]. Note that the size of the test set is
much smaller than the training set, we thus use several datasets.

#5

#9

#24

Ground Truth TP-AE (Proposed) CosyPose PoseRBPF

Fig. 7: Qualitative results of Decoder1 on the T-LESS dataset. The
target objects (5,9,24) and their pose are highlighted with a white overlay on
the input image. The results are displayed from left to right as GT, TP-AE,
CosyPose, and PoseRBPF respectively.

TABLE III: AUC Performance on the YCB-V dataset.
Type RGB-D Method ADD-S Speed

Tracking

TP-AE(mixed) 93.8 26
TP-AE(syn) 92.5 26
PoseRBPF(200 particles) 93.3 5
DeepIM [30] + PoseCNN [41] (4
it)

94.0 6

MaskUKF [31] 94.2 52.6
se(3)-TrackNet [28] 95.52 90.0

Estimation

PoseCNN (ICP) [41] 93.0 < 0.1
PVN3D [11] (w/o refinement) 95.5 5
Densefusion [19] (w/o refinement) 91.2 20
G2L-Net [52] (w/o refinement) 92.4 21
FFB6D [18] 96.6 13.3

the estimated pose of other approaches as the prior pose.
We report a 10.5% increase on CosyPose when using our
approach as pose refinement without any iteration.

C. Comparison with State-of-the-Art Methods

Results on T-LESS dataset: We show the evaluation
results on TLESS in TABLE. II. We included results from
training on synthetic (syn.) data for a fair comparison with
AAE and PoseRBPF. For rotation tracking comparison, we
used the GT to provide 2D bounding boxes for AAE and
PoseRBPF. We also reported results when using the GT poses
for initialization. It is clear that our framework demonstrates
better performances among its competitors on the T-LESS
dataset. Qualitative results are shown in Fig. 7.

Results on YCB-V Dataset: We compare our results with
state-of-the-art methods in TABLE. III. We only use 20% of
the images of the YCB-V training set for training and got
comparable results with other approaches.

V. CONCLUSION

In this paper, we proposed a novel TP-AE object pose
tracking framework that can robustly handle symmetric and
textureless objects under occlusion. Our method outperforms
the state-of-the-art, while also running in real-time (26 FPS).
We successfully demonstrated that embedding temporal in-
formation in our proposed framework can increase the pose
estimation accuracy by a large margin. We also demonstrated
the generalizability of our prediction network and its robust-
ness under disturbances. In addition, we reported a thorough
analysis on the effectiveness of perspective correction. As a
future work, the proposed method could achieve an improved
performance when combined with a refinement process.
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