Linfang Zheng

Ph.D. Candidate · University of Birminghai

1088 Xueyuan Avenue, Nanshan, Shenzhen, 518055, P.R. China

🛙 (+86) 186-4655-1986 | 🛛 zhenglinfang@icloud.com | 🏾 🎢 lynne-zheng-linfang.github.io | 🞓 Google scholar

Education

Ph.D. in UoB(University of Birmingham)
Schoold of Computer Science
 Thesis title: Visual 6D Object Pose Estimation and Tracking Supervisors: Prof. Hyung Jin Chang and Prof. Aleš Leonardis
Visiting Student in SUSTech(Southern University of Science and Technology)

DEPARTMENT OF SYSTEM DESIGN AND INTELLIGENT MANUFACTURING

- Visit lab: Control and Learning for Robotics and Autonomy (CLEAR) Lab
- Supervisor: Prof. Wei Zhang

MSc. in HIT(Harbin Institute of Technology)

INTEGRATED CIRCUIT ENGINEERING

• Outstanding Master's Graduate, Outstanding Master Thesis (Silver Award)

BSc. in HIT(Harbin Institute of Technology)

ELECTRONIC INFORMATION SCIENCE AND TECHNOLOGY

• Direct Admission to Post Graduate School

Research Experience

"My research interests cover a wide range of machine learning methods computer, ranging from deep convolution neural network to reinforcement learning, along with computer vision and robotics. I am particularly interested in machine-environment interaction, real-time 6D object pose recognition, hand pose estimation, eye gaze estimation, cloth manipulation, and planer region extraction."

Category-level Articulated Object Pose Estimation

COMPUTER VISION · 6D OBJECT POSE · ARTICULATED OBJECT

• Submitted to European Conference on Computer Vision (ECCV 2024) (co-author). Under review.

Hand-Object Pose Estimation

COMPUTER VISION · 6D OBJECT POSE · HAND POSE · GENERALIZABILITY · TRANSFORMER

• Submitted to the Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024) (co-author). Under review.

Optimization-based Multi-Step Cloth Pushing Planning

ROBOTICS · PLANNING · MANIPULATION · CLOTH PUSHING · DEFORMABLE OBJECT

• Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2024) (co-author). Under review.

Category-level 6D Object Pose Refinement

 $\mathsf{Computer \, Vision \cdot 6D \, Object \, Pose \cdot Category\text{-}level \cdot Refinement \cdot Graph \, Convolution}$

- This research addressed the previously unexplored problem of geometric discrepancies among category-level objects for 6D object pose refinement.
- We proposed using 3D graph convolution-based geometric feature extraction, learnable affine transformations, and a unique merging mechanism to enhance the relative pose estimation between objects of different shapes
- Achieved significantly enhanced generalizability (outperforming the baseline method using only 4% of the training data) and performance, *i.e.*, the performance on the 10°2cm metric improved by **10.5%**.
- Accepted to IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024) (first author).

Multi-Resolution Planar Region Extraction for Uneven Terrains

ROBOTICS · COMPUTER VISION · SEGMENTATION · PLANE EXTRACTION · LOCOMOTION

Collaboratively Introduced a multi-resolution planer region extraction strategy for uneven terrains from point cloud data.

- Contributed to designing deep learning-based plane segmentation.
- Accepted to IEEE International Conference on Robotics and Automation (ICRA 2024) (co-author).

Birmingham, UK Jan. 2020 - Exp. Jul. 2024

Shenzhen, China Apr. 2021 - PRESENT

Harbin, China Sep. 2015 - Jul. 2017

Harbin, China Sep. 2011 - Jul. 2015

UoB, UK

UoB, UK

Dec. 2023 - PRESENT

Jan. 2024 - Mar. 2024

SUSTech, China Dec. 2023 - Mar. 2024

UoB, UK & SUSTech, China

Mar. 2023 - Mar. 2024

SUSTech, China

Nov. 2022 - Sep. 2023

COMPUTER VISION · 6D OBJECT POSE · CATEGORY-LEVEL · GRAPH CONVOLUTION · BACKBONE · COMPLEX-SHAPED OBJECT

- This research focused on effective latent feature extraction from 3D point clouds.
- We proposed a general 3D graph convolution-based hybrid scope feature extraction layer (HS-layer). The HS-layer: 1) can encode translation and scale information, 2) can extract local-global geometric information, and 3) is robust to outliers.
- We use HS-layer to construct a category-level object pose estimation framework. The resulting framework exhibits robustness to outliers, and significant performance improvement (especially for complex-shaped objects), notably enhancing the 5°2cm metric by 14.5%.
- Accepted to IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023) (first author).

3D Joint Gaze Estimation

COMPUTER VISION · 3D JOINT GAZE ESTIMATION

- This research addressed the previously unexplored problem of integrating a depth prior and a 3D joint field-of-view probability map to estimate attention targets in a scene.
- I collaboratively introduced the cutting-edge depth-aware joint attention estimation framework, surpassing current benchmarks.
- Accepted to IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop (CVPR Workshop 2023) (co-author).

Instance-level 6D Object Pose Tracking

COMPUTER VISION · 6D OBJECT POSE · TRACKING · SEVERE OCCLUSION · TEXTURELESS OBJECT · GRU · AUTO-ENCODER

- This research focused on addressing the challenge of robustness under complex scenarios, particularly for textureless and symmetric objects that are partially occluded.
- Introduced the first neural network-based prior pose generation scheme, leveraging object pose history to effectively forecast future poses.
- Developed a real-time temporally-primed pose estimation architecture that leverages prior pose information and high-quality object recovery for accurate pose error estimation.
- The proposed method outperforms state-of-the-art methods on two benchmark datasets, showing improved robustness in challenging scenarios while maintaining real-time performance.
- Accepted to IEEE International Conference on Robotics and Automation (ICRA 2022) (first author).

Instance-level Object Pose Estimation and Refinement

COMPUTER VISION · 6D OBJECT POSE · ESTIMATION · REFINEMENT · TRANSFORMER

- Collaboratively introduced a Transformer-based network, leveraging global feature correlation to enhance object pose estimation performance.
- Accepted to European Conference on Computer Vision Workshop (ECCV Workshop 2022) (co-author).

Optimal Control Inspired Q-Learning for Switched Linear Systems

OPTIMAL CONTROL · REINFORCEMENT LEARNING · Q-LEARNING · SWITCHED LINEAR SYSTEM

- · Collaboratively proposed an algorithm with a carefully designed parametric approximator that respects the analytical structure of the exact Q-function, paired with an associate parameter training algorithm.
- Accepted to American Control Conference (ACC 2020) (co-author).

Work Experience _____

EMPLOYMENT

SUSTech

RESEARCH ASSISTANT

- · Assisted in project and research work including embedded software and hardware design, algorithm implementation, and project proposal writing.
- Participated in research on reinforcement learning based on optimal control, resulting in publication at ACC 2020.

DJI Co. Ltd.

EMBEDDED HARDWARE ENGINEER

- Evaluated the rationality of electronic component selection in the company's embedded hardware circuit design, enhancing design efficiency
- Managed arrangements and follow-ups for electronic component performance verification, improving the stability of the electronic component supply chain.
- · Achieved cost savings for the company through optimized electronic component selection, receiving recognition and rewards.

INTERNSHIP

DJI Co. Ltd.

EMBEDDED HARDWARE ENGINEER

· Supported Robomasters competition field hardware circuit-related tasks and summer camp activities.

Honors & Awards

UoB, UK

Mar. 2019 - Jan. 2020

Shenzhen, China

Shenzhen, China

Jul. 2016 - Sep. 2016

UoB, UK & SUSTech, China Mar. 2022 - May 2023

UoB. UK & SUSTech. China

Jan. 2022 - Apr. 2023

Feb. 2020 - Mar. 2022

UoB. UK

Shenzhen, China

Jul. 2017 - Mar. 2019

SUSTech, China May 2019 - Dec. 2019

Aug. 2021 - Mar. 2022

- 2023 Best Paper Award, CVPR Workshop on GAZE 2023
- 2017 Outstanding Master's Graduate, Harbin Institute of Technology
- 2017 Silver Award for Outstanding Master's Thesis, Harbin Institute of Technology
- 2017 First Prize Scholarship, Harbin Institute of Technology (2011 2017)
- 2014 Second Prize, HIT Technology Innovation and Entrepreneurship Training Program
- 2014 Second Prize, HIT First Physics Academic Competition
- 2014 Second Prize Scholarship, People's Daily (People.cn)

Skills_____

Programming	Python, C, Matlab, Verilog
Deep Learning	PyTorch, TensorFlow
Hardware Design	Embedded Hardware Design, Integrated Circuit Design, FPGA
Software Design	Embedded Software Design
Languages	English, Mandarin (Mother Language)

Peer-Review Activity _____

Conference

CVPR(2023/2024), ECCV(2023/2024), ICCV(2023,2024), ICRA(2023/2024), IROS(2024), CASE(2024)

Publications _____

2024	Linfang Zheng, Tze Ho Elden Tse, Chen Wang, Yinghan Sun, Hua Chen, Aleš Leonardis, Wei Zhang,
	GeoReF: Geometric Alignment Across Shape Variation for Category-level Object Pose Refinement,
	IEEE Proc. Computer Vision and Pattern Recognition (CVPR), June, 2024.
2024	Yinghan Sun, Linfang Zheng, Hua Chen, Wei Zhang,
	Multi-Resolution Planar Region Extraction for Uneven Terrains,
	IEEE International Conference on Robotics and Automation (ICRA), May, 2024
2023	Linfang Zheng, Chen Wang, Yinghan Sun, Esha Dasgupta, Hua Chen, Aleš Leonardis, Wei Zhang, Hyung Jin Chang,
	HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation,
	IEEE Proc. Computer Vision and Pattern Recognition (CVPR), June, 2023.
2023	Nora Horanyi, Linfang Zheng, Eunji Chong, Aleš Leonardis, Hyung Jin Chang
	Where Are They Looking in the 3D Space?
	IEEE Proc. Computer Vision and Pattern Recognition Workshop (CVPR Workshop), June, 2023. [Best Paper Award]
2022	Linfang Zheng, Aleš Leonardis, Tze Ho Elden Tse, Nora Horanyi, Wei Zhang, Hua Chen, Hyung Jin Chang,
	TP-AE: Temporally Primed 6D Object Pose Tracking with Auto-Encoders,
	IEEE International Conference on Robotics and Automation (ICRA), May, 2022
2022	Zhongqun Zhang, Wei Chen, Linfang Zheng, Aleš Leonardis, Hyung Jin Chang,
	Trans6D: Transformer-Based 6D Object Pose Estimation and Refinement,
	ECCV Workshop, 7th International Workshop on Recovering 6D Object Pose, October, 2022
2020	Hua Chen, Linfang Zheng, Wei Zhang
	Optimal Control Inspired Q-Learning for Switched Linear Systems
	American Control Conference (ACC), July, 2020